Sensong An

Sensong An
Assistant Professor
Discovery Park
Sensong.An@unt.edu
  • Education

    Ph.D. degree in Electrical & Computer Engineering, University of Massachusetts Lowell, August 2016

    M.S. degree in Electronic Engineering & Information Science, University of Science and Technology of China, July 2016

    B.S. degree in Electronic Engineering & Information Science, University of Science and Technology of China, July 2016

  • Biography

    Sensong An was born in Tianjin, China and received his undergraduate and graduate degrees from USTC in 2013 and 2016. He went on to receive his PhD in 2021 from the University of Massachusetts Lowell. After completing his PhD, Sensong worked as a postdoctoral researcher in the Material Science Department at MIT before joining META Reality Labs as a research scientist.

    Sensong's research interests are in applied electromagnetics, specifically in the areas of passive microwave circuit and component design, meta-optic design, and inverse design approaches enabled by deep learning techniques. With a strong educational background and experience in his field, Sensong is well-positioned to make meaningful contributions to his field of research.

  • Research

    RF/Microwave circuits and components, Metamaterials/Metasurfaces, Machine Learning and Deep Neural Networks for applied electromagnetics, phase change materials.

  • Publications

    Journals

    1. An, S., Fowler, C., Zheng, B., Shalaginov, M.Y., Tang, H., Li, H., Zhou, L., Ding, J., Agarwal, A.M., Rivero-Baleine, C. and Richardson, K.A., 2019. A deep learning approach for objective-driven all-dielectric metasurface design. ACS Photonics, 6(12), pp.3196-3207.
    2. An, S., Zheng, B., Tang, H., Shalaginov, M.Y., Zhou, L., Li, H., Gu, T., Hu, J., Fowler, C. and Zhang, H., 2021. Multifunctional metasurface design with a generative adversarial network. Advanced Optical Materials, 9(5), 2001433.
    3. Shalaginov, M.Y., An, S., Zhang, Y., Yang, F., Su, P., Liberman, V., Chou, J.B., Roberts, C.M., Kang, M., Rios, C. and Du, Q., 2021. Reconfigurable all-dielectric metalens with diffraction limited performance. Nature Communications, 12(1), pp.1-8.
    4. An, S., Zheng, B., Shalaginov, M.Y., Tang, H., Li, H., Zhou, L., Dong, Y., Haerinia, M., Agarwal, A.M., Rivero-Baleine, C. and Kang, M., 2021. Deep Convolutional Neural Networks to Predict Mutual Coupling Effects in Metasurfaces. Advanced Optical Materials, 10(3), 2102113.
    5. An, S., Zheng, B., Julian, M., Williams, C., Tang, H., Gu, T., Zhang, H., Kim, H.J. and Hu, J., 2022. Deep neural network enabled active metasurface embedded design. Nanophotonics, 11(17), pp. 4149-4158.
    6. An, S., Zheng, B., Tang, H., Hang, Li., Li, Zhou., Yunxi, D., Mohammad, H. and Hualiang, Z., 2022, Ultrawideband Schiffman Phase Shifter Designed With Deep Neural Networks. IEEE Transactions on Microwave Theory and Techniques, doi: 10.1109/TMTT.2022.3189655.
    7. An, S., Zheng, B., Shalaginov, M.Y., Tang, H., Li, H., Zhou, L., Ding, J., Agarwal, A.M., Rivero-Baleine, C., Kang, M. and Richardson, K.A., 2020. Deep learning modeling approach for metasurfaces with high degrees of freedom. Optics Express, 28(21), pp.31932-31942.
    8. Shalaginov, M.Y., An, S., Yang, F., Su, P., Lyzwa, D., Agarwal, A.M., Zhang, H., Hu, J. and Gu, T., 2020. Single-Element Diffraction-Limited Fisheye Metalens. Nano Letters, 20(10), pp.7429-7437. 
    9. Zhang, Y., Fowler, C., Liang, J., Azhar, B., Shalaginov, M.Y., An, S., Chou, J.B., Roberts, C.M., Liberman, V., Kang, M. and Ríos, C., 2020. Electrically Reconfigurable Nonvolatile Metasurface Using Low-Loss Optical Phase Change Material Nature Nanotechnology, 16(6), pp.661-666.
    10. Zhang, L., Ding, J., Zheng, H., An, S., Lin, H., Zheng, B., Du, Q., Yin, G., Michon, J., Zhang, Y. and Fang, Z., 2018. Ultra-thin high-efficiency mid-infrared transmissive Huygens meta-optics. Nature communications, 9(1), pp.1-9.
    11. Ding, J., An, S., Zheng, B. and Zhang, H., 2017. Multiwavelength Metasurfaces Based on Single‐Layer Dual‐Wavelength Meta‐Atoms: Toward Complete Phase and Amplitude Modulations at Two Wavelengths. Advanced Optical Materials, 5(10), p.1700079.
    12. Wang, X., Ding, J., Zheng, B., An, S., Zhai, G. and Zhang, H., 2018. Simultaneous realization of anomalous reflection and transmission at two frequencies using bi-functional metasurfaces. Scientific reports, 8(1), pp.1-8.
    13. Tang, H., Zheng, B., An, S., Li, H., Haerinia, M., Fowler, C. and Zhang, H., 2021. A Broadband High-Efficiency Dipole Array Based on Frequency Selective Surface and Integrated Feeding Structure. IEEE Open Journal of Antennas and Propagation (Early Access), pp. 1-1.
    14. Yang, F., An, S., Shalaginov, M.Y., Zhang, H., Rivero-Baleine, C., Hu, J., and Gu, T., 2021. Design of broadband and wide-field-of-view metalenses. Optics Letters, 46(22), pp.5735-5738.
    15. Wang, T., Zhai, G., Xie, R., Zhu, S., Gao, J., An, S., Zheng, B., Li, H., Liu, Y., Zhang, H. and Ding, J., 2019. Dual‐Band Terahertz Auto‐Focusing Airy Beam Based on Single‐Layer Geometric Metasurfaces with Independent Complex Amplitude Modulation at Each Wavelength. Advanced Theory and Simulations, 2(7), p.1900071.
    16. Wang, T., Xie, R., Zhu, S., Gao, J., Xin, M., An, S., Zheng, B., Li, H., Lin, Y., Zhang, H. and Zhai, G., 2019. Dual-band high efficiency terahertz meta-devices based on reflective geometric metasurfaces. IEEE Access, 7, pp.58131-58138.
    17. Shalaginov, M.Y., Campbell, S.D., An, S., Zhang, Y., Ríos, C., Whiting, E.B., Wu, Y., Kang, L., Zheng, B., Fowler, C. and Zhang, H., 2020. Design for quality: reconfigurable flat optics based on active metasurfaces. Nanophotonics, 9(11), pp.3505-3534.
    18. Ríos, C., Zhang, Y., Shalaginov, M.Y., Deckoff-Jones, S., Wang, H., An, S., Zhang, H., Kang, M., Richardson, K.A., Roberts, C. and Chou, J.B., 2021. Multi‐Level Electro‐Thermal Switching of Optical Phase‐Change Materials Using Graphene. Advanced Photonics Research, 2(1), p.2000034.
    19. Yang, F., An, S., Shalaginov, M. Y., Zhang, H., Hu, J., & Gu, T. (2023). Understanding wide field-of-view flat lenses: an analytical solution. Chinese Optics Letters, 21(2), 023601.
    20. An. S., Muneer, B. and Zhu, Q., 2015. Generalized Analysis Method for a Class of Novel Wideband Loaded-Stub Phase Shifters. Radioengineering, 24(4), p.927.
    21. Xie, R., Xin, M., Chen, S., Zhang, D., Wang, X., Zhai, G., Gao, J., An, S., Zheng, B., Zhang, H. and Ding, J., 2020. Frequency‐Multiplexed Complex‐Amplitude Meta‐Devices Based on Bispectral 2‐Bit Coding Meta‐Atoms. Advanced Optical Materials, 8(24), p.2000919.
    22. Xie, R., Zhai, G., Gao, J., Zhang, D., Wang, X., An, S., Zheng, B., Zhang, H. and Ding, J., 2020. Multifunctional Geometric Metasurfaces Based on Tri‐Spectral Meta‐Atoms with Completely Independent Phase Modulations at Three Wavelengths. Advanced Theory and Simulations, 3(9), p.2000099.
    23. Xin, M., Xie, R., Zhai, G., Gao, J., Zhang, D., Wang, X., An, S., Zheng, B., Zhang, H. and Ding, J., 2020. Full control of dual-band vortex beams using a high-efficiency single-layer bi-spectral 2-bit coding metasurface. Optics Express, 28(12), pp.17374-17383.
    24. Zheng, B., Ren, H., An, S., Tang, H., Li, H., Haerinia, M., Dong, Y., Fowler, C. and Zhang, H., 2021. Tunable Metasurface With Dynamic Amplitude and Phase Control. IEEE Access, 9, pp.104522-104529.
    25. Su, P., Shalaginov, M., Gu, T., An, S., Li, D., Li, L., Jiang, H., Joo, S., Kimerling, L., Zhang, H. and Hu, J., 2021. Large-area optical metasurface fabrication using nanostencil lithography. Optics Letters, 46(10), pp.2324-2327.

    Conferences

    1. An, S., Fowler, C., Shalaginov, M.Y., Zhang, Y., Su, P., Kang, M., Zheng, B., Tang, H., Li, H., Agarwal, A.M. and Rivero-Baleine, C., 2019, April. Modeling of All-Dielectric Metasurfaces Using Deep Neural Networks. In 2019 International Applied Computational Electromagnetics Society Symposium (ACES) (pp. 1-2). IEEE.
    2. An, S., Fowler, C., Zheng, B., Shalaginov, M.Y., Tang, H., Li, H., Ding, J., Kang, M., Agarwal, A.M., Rivero-Baleine, C. and Richardson, K.A., 2020, May. All-dielectric Metasurface Designs Enabled by Deep Neural Networks. In CLEO: QELS_Fundamental Science (pp. FW4B-8). Optical Society of America.
    3. An, S., Zheng, B., Shalaginov, M.Y., Tang, H., Li, H., Zhou, L., Haerinia, M., Dong, Y., Agarwal, A.M., Rivero-Baleine, C. and Kang, M., 2021, May. A Deep Learning Approach to Explore the Mutual Coupling Effects in Metasurfaces. In CLEO: Science and Innovations (pp. JTu3A-75). Optical Society of America.
    4. An, S., Ding, J., Zheng, B., Lin, Y., Zhang, W. and Zhang, H., 2017, May. Quad-wavelength multi-focusing lenses with dual-wavelength meta-atoms. In CLEO: Science and Innovations (pp. JW2A-104). Optical Society of America.
    5. An, S., Xia, Z., Xia, Y. and Zhu, Q., 2015, June. Design of a miniaturized L-band four-bit digital phase shifter. In 2015 IEEE 4th Asia-Pacific Conference on Antennas and Propagation (APCAP) (pp. 512-514). IEEE.
    6. Shalaginov, M.Y., An, S., Zhang, Y., Yang, F., Su, P., Liberman, V., Chou, J.B., Roberts, C.M., Kang, M., Rios, C. and Du, Q., 2020, August. Reconfigurable all-dielectric metalens for diffraction-limited imaging. In Active Photonic Platforms XII (Vol. 11461, p. 114610M). International Society for Optics and Photonics.
    7. Shalaginov, M.Y., An, S., Zhang, Y., Yang, F., Fowler, C., Zhang, H., Hu, J. and Gu, T., 2020, July. Reconfigurable All-dielectric Metasurfaces based on Optical Phase change Materials: Design Approaches. In 2020 International Applied Computational Electromagnetics Society Symposium (ACES) (pp. 1-2). IEEE.
    8. Shalaginov, M., An, S., Zhang, Y., Yang, F., Su, P., Liberman, V., Chou, J., Roberts, C., Kang, M., Rios, C. and Du, Q., 2020, May. Reconfigurable Non-volatile High-performance Metalens. In 2020 Conference on Lasers and Electro-Optics (CLEO) (pp. 1-2). IEEE.
    9. Shalaginov, M.Y., An, S., Yang, F., Su, P., Agarwal, A., Zhang, H., Hu, J. and Gu, T., 2019, September. Single-layer Planar Metasurface Lens with> 170° Field of View. In Frontiers in Optics (pp. FM4C-1). Optical Society of America.
    10. Shalaginov, M., An, S., Zheng, H., Zhang, L., Fowler, C., Ding, J., Gu, T., Zhang, H. and Hu, J., 2019, September. High-performance mid-IR metasurface optics (Conference Presentation). In Metamaterials, Metadevices, and Metasystems 2019 (Vol. 11080, p. 1108005). International Society for Optics and Photonics.
    11. Li, H., An, S., Zheng, B., Tang, H., Fowler, C., Guo, W., Zhang, H., Xie, R. and Ding, J., 2019, July. A High Performance Terahertz Metalens. In 2019 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting (pp. 509-510). IEEE.
    12. Shalaginov, M., An, S., Li, L., Zheng, H., Ding, J., Zhang, L., Rivero-Baleine, C., Gu, T., Zhang, H. and Hu, J., 2019, May. High-index-contrast dielectric metasurface optics for MWIR imaging (Conference Presentation). In Advanced Optics for Imaging Applications: UV through LWIR IV (Vol. 10998, p. 109980G). International Society for Optics and Photonics.
    13. Xia, Z., An, S., Li, M. and Zhu, Q., 2015, June. Realizing wideband negative inductor using current feedback amplifier. In 2015 IEEE 4th Asia-Pacific Conference on Antennas and Propagation (APCAP) (pp. 515-517). IEEE.
    14. Shalaginov, M.Y., An, S., Yang, F., Su, P., Lyzwa, D., Agarwal, A., Zhang, H., Hu, J. and Gu, T., Single-element, Aberration-free Fisheye Metalens. Photonics and Optoelectronics, p.150.
    15. Shalaginov, M.Y., An, S., Zhang, Y., Su, P., Yadav, A., Kang, M., Rios, C., Agarwal, A., Richardson, K., Zhang, H. and Gu, T., Ultra-thin, Reconfigurable, High-efficiency Meta-optical Devices in Mid-infrared. Photonic, Sensing Devices, and Systems, p.57.
    16. Shalaginov, M., Zhang, Y., An, S., Chou, J., Du, Q., Yadav, A., Kang, M., Blanco, C., Su, P., Driggers, M. and Kirk, A., 2018, September. Ultra-thin, reconfigurable meta-optics using optical phase change materials (Conference Presentation). In Metamaterials, Metadevices, and Metasystems 2018 (Vol. 10719, p. 1071911). International Society for Optics and Photonics.
    17. Gu, T., Shalaginov, M.Y., An, S., Yang, F., Du, Q., Zhang, Y., Fowler, C., Rivero-Baleine, C., Zhang, H. and Hu, J., 2020, May. Advanced imaging optics enabled by ultra-thin, all-dielectric metasurfaces (Conference Presentation). In Advanced Optics for Imaging Applications: UV through LWIR V (Vol. 11403, p. 1140303). International Society for Optics and Photonics.
    18. Gu, T., Shalaginov, M., An, S., Campbell, S.D., Zhang, Y., Ríos, C., Kang, L., Kang, M., Gonçalves, C., Rivero-Baleine, C. and Richardson, K., 2020, May. High-performance reconfigurable meta-optics based on optical phase change materials (Rising Researcher)(Conference Presentation). In Micro-and Nanotechnology Sensors, Systems, and Applications XII (Vol. 11389, p. 113890O). International Society for Optics and Photonics.
    19. Puentes, G., Shalaginov, M.Y., An, S., Yang, F., Su, P., Agarwal, A., Zhang, H., Hu, J., Gu, T., Cao, G. and Lin, H., 2019, September. SPIN HALL EFFECT OF LIGHT IN PHOTONIC MATERIALS. In Frontiers in Optics (pp. FM4B-3). Optical Society of America.
    20. Wang, T., Li, H., Xie, R., An, S., Zhu, S., Zhai, G., Guo, W., Zhang, H. and Ding, J., 2019, May. Dual-wavelength Terahertz Metalens Based on Geometric Phase Metasurface. In 2019 Conference on Lasers and Electro-Optics (CLEO) (pp. 1-2). IEEE.
    21. Chandran, P.B.M., Zheng, B., An, S., Tang, H., Li, H. and Zhang, H., 2018, July. Sandwiched PRS Fabry-Perot Structure for Achieving Compactness and Improved Aperture Efficieny. In 2018 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting (pp. 2043-2044). IEEE.
    22. Zhang, Y., Ríos, C., Shalaginov, M.Y., An, S., Fowler, C., Chou, J.B., Roberts, C.M., Liberman, V., Vitale, S., Kang, M. and Richardson, K.A., 2020, October. Optical phase-change materials (O-PCMs) for reconfigurable photonics. In Asia Communications and Photonics Conference (pp. T2D-1). Optical Society of America.
    23. Zhang, Y., Liang, J., Shalaginov, M., Deckoff-Jones, S., Ríos, C., Chou, J.B., Roberts, C., An, S., Fowler, C., Campbell, S.D. and Azhar, B., 2019, May. Electrically Reconfigurable Nonvolatile Metasurface Using Optical Phase Change Materials. In CLEO: Science and Innovations (pp. JTh5B-3). Optical Society of America.
    24. Zheng, H., Ding, J., Zhang, L., Lin, H., An, S., Gu, T., Zhang, H. and Hu, J., 2018, March. Ultra-thin, high-efficiency mid-infrared Huygens metasurface optics. In 2018 International Applied Computational Electromagnetics Society Symposium (ACES) (pp. 1-2). IEEE.
    25. Yang, F., Shalaginov, M., An, S., Zhang, H., Rivero-Baleine, C., Gu, T. and Hu, J., 2021, June. Wide Field-of-view Achromatic Metalenses. In Flat Optics: Components to Systems (pp. FTu4A-1). Optical Society of America.
    26. Zhang, Y., Fowler, C., Liang, J., Azhar, B., Shalaginov, M.Y., Deckoff-Jones, S., An, S., Chou, J.B., Roberts, C.M., Liberman, V. and Kang, M., 2021, June. Electrically Reconfigurable Nonvolatile Metasurface based on Phase Change Materials. In Flat Optics: Components to Systems (pp. FTu4A-5). Optical Society of America.
    27. Fowler, C., An, S., Zheng, B., Li, H., Tang, H., Haerinia, M., Dong, Y., Zhang, Y., Shalaginov, M.Y., Agarwal, A.M. and Rivero-Baleine, C., 2021, June. A Deep Neural Network Near-Universal Dielectric Meta-Atom Generator. In Flat Optics: Components to Systems (pp. JW4D-4). Optical Society of America.
    28. Haerinia, M., Fowler, C., An, S., Tang, H., Zheng, B., Dong, Y., Guo, W. and Zhang, H., 2021, August. Design of Ultra-thin Near-infrared Freestanding Dielectric Meta-optics Devices. In 2021 International Applied Computational Electromagnetics Society Symposium (ACES) (pp. 1-4). IEEE.
    29. Ríos, C., Zhang, Y., Du, Q., Popescu, C.C., Shalaginov, M., Miller, P., Roberts, C., Kang, M., Richardson, K., An, S. and Fowler, C., 2021, August. Electrically-switchable foundry-processed phase change photonic devices. In Active Photonic Platforms XIII (Vol. 11796, p. 117961Z). International Society for Optics and Photonics.
    30. Yang, F., Lin, H. I., Shalaginov, M. Y., Stoll, K., An, S., Rivero-Baleine, C., ... & Gu, T. (2022, October). Non-mechanical reconfigurable zoom metalenses. In Active Photonic Platforms 2022 (Vol. 12196, pp. 19-25). SPIE.
    31. Constantin-Popescu, C., Shalaginov, M., Yang, F., Lin, H. I., An, S., Roberts, C., ... & Hu, J. (2022, October). New phase change materials for active photonics. In Active Photonic Platforms 2022 (Vol. 12196, pp. 26-37). SPIE.
  • Honors and Awards
    • 3rd place of Best Student Paper Award (BSPA) in PIERS (PhotonIcs and Electromagnetics Research Symposium) 2021 in Hangzhou.
    • One of my research items was listed as one of the top MIT research stories of 2020: https://news.mit.edu/2020/top-research-stories-1222
    • One of my published papers “Deep learning modeling approach for metasurfaces with high degrees of freedom” was the No. 1 top downloaded articles on Deep Learning from Optic express and was highlighted as an Editor’s Pick.
    • The published paper “Ultra-thin high-efficiency mid-infrared transmissive Huygens meta-optics” was in the Top 50 most read Nature Communications physics articles in 2018, also reported by MIT News: https://news.mit.edu/2018/improving-mid-infrared-imaging-and-sensing-0426
    • Contributed to the design of a fisheye lens, reported by MIT News: https://news.mit.edu/2020/flat-fisheye-lens-0918
    • Designed a reconfigurable focal lens using phase change materials, reported by MIT News: https://news.mit.edu/2021/metalens-shifts-focus-0222